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We investigate the existence and the properties of fully separable (fully factorized) ground states in quantum
spin systems. Exploiting techniques of quantum information and entanglement theory, we extend a recently
introduced method and construct a general, self-contained theory of ground state factorization in frustration-
free quantum spin models defined on lattices in any spatial dimension and for interactions of arbitrary range.
We show that, quite generally, nonexactly solvable translationally invariant models in presence of an external
uniform magnetic field can admit exact, fully factorized ground state solutions. Unentangled ground states
occur at finite values of the Hamiltonian parameters satisfying well-defined balancing conditions between the
applied field and the interaction strengths. These conditions are analytically determined together with the type
of magnetic orderings compatible with factorization and the corresponding values of the fundamental observ-
ables such as energy and magnetization. The method is applied to a series of examples of increasing complex-
ity, including translationally invariant models with short, long, and infinite ranges of interaction, as well as
systems with spatial anisotropies, in lower and higher dimensions. We also illustrate how the general method,
besides yielding a large series of exact results for complex models in any dimension, recovers, as particular
cases, the results previously achieved on simple models in low dimensions exploiting direct methods based on

factorized mean-field ansatz.
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I. INTRODUCTION

Quantum information theory is an area of scientific inves-
tigation that has witnessed an enormous progress in the last
decade.! In the framework of quantum information science,
paradigmatic systems of condensed matter physics such as,
e.g., spin chains and harmonic lattices are analyzed from the
point of view of their information content and ability to pro-
cess and transfer information. Fundamental concepts of sta-
tistical mechanics and probability, such as the Shannon-von
Neumann entropy,” play a central role in the quantification of
bipartite quantum entanglement.® On the other hand, exciting
advances in quantum information research are in a sense
paying back the debt: the mathematical and theoretical tool-
kits developed for the characterization and quantification of
quantum entanglement have proven useful to tackle ques-
tions and improve our understanding in the investigation of
strongly correlated systems and quantum phase transitions.*

Perhaps the most interesting development stemming from
the application of the tools of entanglement theory concerns
the study of correlation scaling in diversely connected sys-
tems, with its relations to conformal field theory and the
proof of longstanding conjectures on entropic area laws in
spin and harmonic lattice systems.’ These investigations and
the associated results are of fundamental interest because
they allow to enhance the control and establish firmer bounds
and limits of applicability on many important tools of simu-
lation and numerical analysis of complex many-body sys-
tems, a fundamental task in condensed matter, such as the
density-matrix renormalization group algorithms,® matrix
product representations,” the entanglement renormalization
ansatz,® and weighted graph states methods.’
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The pioneering application of quantum information con-
cepts to the condensed matter was the observation that two-
body entanglement, as quantified by the concurrence, in the
ground state of a cooperative system, exhibits peculiar scal-
ing features approaching a quantum critical point.'"® These
seminal studies helped to clarify that at quantum phase
transitions,!! the dramatic change in the ground state of a
many-body system is associated to, or reflected by, a change
in the way that quantum fluctuations are correlated, i.e., in
the way entanglement is distributed among the elementary
constituents. Many recent efforts have thus been aimed at
understanding the behavior of different measures of en-
tanglement at quantum phase transitions and assessing the
corresponding enhancement of properties useful for applica-
tions in quantum technology and quantum engineering.*
However, since most entanglement measures can be often
rewritten in terms of the conventional n-point correlation
functions, the presence of a divergence in the former at quan-
tum criticality can be directly traced back to a divergence in
the latter,'> although in some particular instances
entanglement-based studies allowed to discover different
types of phase transitions.'3

Finally, a more technologically oriented product of the
interaction between these two areas of research is the study
of quantum spin chains as natural information carriers and
distributors,'* able to realize tasks such as quantum state
transfer'> and storage,'® possibly with maximal fidelity in
chains with suitably engineered couplings and dynamics.

Quantum engineering and quantum technology are being
indeed developed at a fast pace. Quantum devices are vigor-
ously pursued for applications ranging from nanosciences to
quantum  computation and  entanglement-enhanced
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metrology.!” Despite a large variety of possible implementa-
tions involving different physical systems, many relevant
properties of such devices can be, in fact, investigated in a
unified setting by appropriate mappings to quantum spin
models.'®!° Control of separability and entanglement in
ground states of quantum spin models plays an important
role in entanglement-enabled quantum technology applica-
tions and needs to be characterized and quantified in differ-
ent physical regimes.* From a more fundamental perspective,
the determination of exact solutions endowed with precisely
known properties of separability or entanglement, can be of
great relevance in the study of advanced models of con-
densed matter and cooperative systems that are, in general,
not exactly solvable.

In this paper we exploit quantum information tools to
tackle another important problem in condensed matter phys-
ics: the determination and characterization of exact ground
states of cooperative systems characterized by the property
of being in the form of a fully factorized tensor product of
single-particle pure states, with no quantum correlations be-
tween the individual constituents. Historically, the occur-
rence of totally factorized (unentangled) ground states of
quantum many-body systems was first discovered in the one-
dimensional (1D) anisotropic Heisenberg model with
nearest-neighbor interactions by Kurmann et al.,”® by adopt-
ing a direct method in terms of product state ansatz. This
result was later rederived and extended to two dimensions
using quantum Monte Carlo numerical methods.?! The direct
product-state ansatz method of Kurmann et al. has been later
extended to anisotropic rings with interactions of arbitrary
range, by exploiting the observation that factorized ground
states break the parity symmetry.?*?* Complex quantum sys-
tems exhibiting cooperative behaviors, whose ground states
are typically entangled,”* may thus admit, for some non-
trivial values of the Hamiltonian parameters, a ground state
which is completely separable. The occurrence of factoriza-
tion at finite or even strong values of the couplings is thus an
effect of a delicate balancing between interactions and exter-
nal fields.

The phenomenon of ground state factorization is particu-
larly intriguing as it appears to be associated with the pres-
ence of an “entanglement phase transition” with no classical
counterpart.” Furthermore, for the purposes of quantum en-
gineering applications, that employ distributed entanglement
in order to manipulate and transfer information,' factoriza-
tion points need to be exactly identified and either avoided,
in order to guarantee the reliable implementation of quantum
devices, or properly exploited for the dynamical creation of
strongly entangled multipartite states of large assemblies of
microsystems (graph and cluster states). Finally, and also
quite importantly, for models not admitting exact general so-
lutions, achieving knowledge of the exact ground state, even
if only for the restricted nontrivial set of parameters associ-
ated to factorization, would allow (i) to prove the existence
of an ordered phase and characterize it and (ii) to build varia-
tional or perturbative approximation schemes around the ex-
act factorized solution, that may then be used as test bench-
marks for the validity and the precision of numerical
algorithms and simulations. Unfortunately, the direct method
based on the ansatz of a factorized solution is neither suffi-
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ciently general nor mathematically tractable, apart from the
notable exceptions of one-dimensional spin chains with
short-range,”” infinite-range,’® and some types of long-range
exchange interactions.?>?’

In a recent work?’ we introduced an analytic method that
allows to determine exactly the existence of factorized
ground states and to characterize their properties in quantum
spin models defined on regular lattices of any size (finite as
well as at the thermodynamic limit), in any spatial dimen-
sion, and with spin-spin interactions of arbitrary range. In
correspondence to rigorously established ground state factor-
izability, the method also allows to determine sets of exact
solutions in generally nonexactly solvable models. All the
previous particular findings can be rigorously rederived and
extended within a unified framework inspired by concepts of
quantum information science.

In the present work we extend the original method intro-
duced in Ref. 27 and we develop a general self-contained
theory of ground state factorization in (frustration-free)
quantum spin systems: with no a priori assumption on the
nature of the magnetic ordering, we derive a complete and
closed set of conditions that have to be satisfied by the
Hamiltonian interaction parameters in order for the ground
state to be factorized, at precisely determined values of the
external magnetic field, with well-defined values of the mag-
netization and of the energy. Besides the completely rigorous
rederivation of the few previously known results on quantum
factorization points,?2320 our general analytic method al-
lows to determine exact factorization points and factorized
ground states in, generally nonexactly solvable, spin-1/2
models as well as in the corresponding Hamiltonian models
of any higher spin. These results hold true regardless of spa-
tial dimensionality and interaction range, and can be easily
extended even to nontranslationally invariant systems. We
illustrate the versatility of the method with a series of differ-
ent applications, including models with nearest-neighbor in-
teractions (for which we provide the full factorization dia-
gram, generalizing the results of Refs. 20, 22, and 23, and of
our recent work?’), models with long-range interactions (no-
tably including, among others, the fully connected infinite-
range Lipkin-Meshkov-Glick (LMG) model?® and systems
with unbalanced next-to-nearest-neighbor interactions on cu-
bic lattices), and models with spatial anisotropies.

The paper is organized as follows. An excursus on the
problem of ground state factorization is presented in Sec. II.
In Sec. III we recall the quantum information toolkit upon
which our method is based on, in particular the formalism of
single-spin or single-qubit, unitary operations, and associated
entanglement excitation energies, previously introduced for
the characterization and quantification of bipartite entangle-
ment from an abstract geometrical perspective.?®?° The gen-
eral method for the rigorous determination of factorized
ground states, that generalizes the scheme introduced in Ref.
27, is discussed in full detail in Sec. IV. Relevant applica-
tions and examples, including models defined on lattices of
different spatial dimensions and with different interaction
ranges as well as extensions to models with spatial anisotro-
pies and with dimerized interactions are discussed in Secs.
V-VIIL. Concluding remarks and outlooks on future perspec-
tives are presented in Sec. IX.
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II. THEORY OF GROUND STATE FACTORIZATION:
STATE OF THE ART

Quantum fluctuations in the ground states of cooperative
many-body systems are typically highly correlated, i.e., those
states contain in the most general instance a strong degree of
entanglement distributed among the individual components.
This is one of the reasons why their exact characterization is
often hard to be accomplished by analytical or even numeri-
cal methods. However, there may exist particular solutions
corresponding to special values of the Hamiltonian param-
eters such that the ground state becomes “classical-like,” in
the sense of being a full product state of single-site factors
(completely separable, fully factorized state). It is quite sur-
prising that despite the inherent appeal of such exact, special
solutions, and the renewed interest stemming from possible
applications to quantum technology, very few analytical ad-
vances were obtained in the last quarter of a century.

A. Direct method: Product state ansatz

The first systematic work on ground state factorization in
quantum spin models was completed by Kurmann et al.?° in
1982. They focused on the one-dimensional nearest-neighbor
anisotropic Heisenberg-type antiferromagnetic spin-1/2
model in transverse field, with the assumption that all the
spin-spin couplings take non-negative values. Kurmann et al.
identified a precise value of the external magnetic field, the
“factorizing field,” corresponding to which the system ad-
mits a fully factorized ground state. They employed a very
direct, “brute force” method, i.e., formulating a product state
ansatz and verifying if and for what values of the Hamil-
tonian parameters it satisfies the stationary Schrodinger prob-
lem with lowest energy. Even though this approach appears
obvious and extremely easy to pursue, the positive result
obtained by Kurmann et al. in the case of the 1D Heisenberg
model was enabled by some special properties of the case
they analyzed. In fact, in order to verify the eigenvalue equa-
tion for the product state ansatz, one needs to decompose the
total Hamiltonian of the system into a series of pairwise
terms, which could be done easily for the model studied by
Kurmann et al. since all the “pairwise components” of the
factorizing magnetic field had the same weight in this par-
ticular case. However, this direct method of determining fac-
torization is in fact significantly less obvious, useful, and
comprehensive, when one tries to apply it to more general
cases. For instance, considering models with interaction
terms of growing spatial range, and/or increasing the spatial
dimensionality of the lattice, and/or treating extensions to
spatially anisotropic or nontranslationally invariant models,
results in increasingly hard “guesses” concerning the parti-
tioning of the external field into pairwise components and in
increasingly nontrivial verification steps. Depending on the
structure of the model and on the form of the product state
ansatz, the direct method may either fail to detect factoriza-
tion points at all, or it may detect only a subset of all physi-
cally realizable factorized solutions, or finally it may lead to
intractable sets of conditions. These limitations of the direct
method become evident, as we will see in the following,
even in the simplest 1D XYZ model with nearest-neighbor
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interactions analyzed by Kurmann and co-workers. In their
original work, due to the insufficient generality of their pro-
posed product ansatz, they failed to identify a wide range of
situations that allow the existence of factorized ground
states. As we will see when discussing models with compet-
ing interactions of different spatial ranges, a further serious
fault of the direct method, that becomes incurable in the
presence of frustration, is its incorrect assessment of factor-
ized ground states that are in fact excited energy eigenstates
of the system.

Following the seminal analysis by Kurmann et al., the
direct method has been applied to the fully connected
infinite-range Lipkin-Meshkov-Glick model by Dusuel and
Vidal,”® and to the anisotropic Heisenberg chain with the
same interactions of arbitrary range along the three spatial
directions by Hoeger et al.??> and by Rossignoli et al.>* We
would like to remark that these works, that include the re-
sults of Refs. 20 and 26 as special cases, provide an interest-
ing characterization of factorization points in finite (one-
dimensional) translationally invariant lattice spin models
with periodic boundary conditions as those points where the
parity symmetry is broken.

B. Quantum informatic approach

A general and rigorous approach to the problem of ground
state separability, completely different from the direct
method based on the product state ansatz, has been intro-
duced by us in Ref. 27 and is fully developed in the present
work. This analytic method allows inter alia to complete the
factorization diagram of the anisotropic spin-1/2 models
without restrictions on the sign of the couplings, and to go
significantly beyond the limitations of the previously men-
tioned studies. Our approach is based on an additional char-
acterization of product states (including product ground
states) that employs concepts and tools of quantum informa-
tion and entanglement theory. The strong point of the quan-
tum informatic approach to ground state factorization lies in
its generality and its ensuing independence from the types
and ranges of interactions present in the Hamiltonian, the
lattice size, and the spatial dimension, which makes it appli-
cable in the most general cases and therefore especially use-
ful in all the situations that are either intractable or incom-
plete if one resorts to the direct method or to numerical
techniques.

In fact, in the original formulation of the quantum infor-
matic method?’ there was still trace of a residual “ansatz” in
the initial stage, since the magnetic ordering of the candidate
factorized ground state had to be in some sense guessed, and
imposed a priori. Moreover, in the final stage, we were not
yet able to derive a completely general set of conditions in
order to determine in each situation whether a candidate fac-
torized state that turned out to belong to the spectrum of the
Hamiltonian was actually a ground state or belonged to the
set of excited states. This had then to be decided case by case
in each specific instance.

In the present work we proceed further and develop the
complete method to determine and characterize factorized
ground states in quantum cooperative systems. We provide
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the systematics that allows to determine the occurrence of
full ground state separability given a generic quantum spin
Hamiltonian. The magnetic ordering is derived as a conse-
quence of the theory and not imposed a priori. A complete
set of general conditions is established for the verification of
ground state factorization, and the elegance of the method
does not hinder practical usefulness in the application to spe-
cific models and situations.

We would like to recall that numerical advances on the
problem of ground state factorization have been realized by
the Monte Carlo study of ground state factorization in two-
dimensional anisotropic nearest-neighbor spin models.?! Un-
fortunately, beyond this important result the numerical ap-
proach appears to have a very restricted potential for
extensions, since the required computational power increases
rapidly with the spatial dimension and/or with the range of
interactions. We will show that the difficulties inherent to the
direct analytic approach and to the numerical method are
intrinsically absent in our formalism.

III. SINGLE QUBIT UNITARY OPERATIONS AND
ENTANGLEMENT EXCITATION ENERGIES

In this section we provide a brief overview of some recent
results on the geometrical interpretation of the entanglement
measure known as “tangle” (linear entropy)?® and the conse-
quences it entails for the relationship between energy and
pairwise entanglement.”® Such results embody the premises
for our all-analytic characterization of ground state separa-
bility in quantum spin systems.

Here and in the following we consider generic systems
made of N spin-1/2 elementary constituents, or, in the lan-
guage of quantum information, N qubits. For such a system,
we introduce the set of single-qubit unitary operations
(SQUOs) U,,?® defined as the unitary transformations that act
separately as the identity on any spin of the system except
the kth one, on which they act instead as Hermitian, unitary,
and traceless operators:

UkE®]i®20k' (1)
i#k

In Eq. (1) 1; stands for the identity operator on the ith spin of
the system while the generic Hermitian, unitary, and traceless
operator Oy, can be expressed as a linear combination of the
standard spin operators (S¥) defined on the kth spin

O, =sin 6, cos ¢;S; + sin 6, sin ¢S, +cos 6, S;.  (2)

In the previous definition the parameters 6, and ¢, take val-
ues, respectively, in the ranges (—m/2,w/2] and [0,27).
Physically, O, corresponds to a rotation in the spin space,
and the traceless condition imposes the rotation operation to
be orthogonal to the identity, so basically a combination of
spin flip and phase flip.

A SQUO transforms every pure state |V) e
state |¥)=U,| W), that in general differs from |¥). We may
quantify the action of the SQUO in terms of the trace dis-
tance between the original and the transformed state, defined
as D(U;;|W))=D(6,; ¢ [ W) =1-[(W|U,|¥)|*. The dis-
tance D varies in the interval [0,1] and vanishes if and only if

C2N into a new
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the two states coincide, meaning that the considered SQUO
leaves the original state unchanged. For a given initial state
and for any site k, one can determine the Extremal-SQUO
(E-SQUO) that minimizes such a distance. One can prove
that the E-SQUO is uniquely determined by the following

conditions on the angular variables:?3

Q= arctan( <SZ> ) s
(Sp

(Spcos @+ (Sy)sin @)
(Sp ’

where (Sf) denotes the expectation value of the spin operator
S¢ on the unperturbed state |[W)((SH=(W|S|W¥)). The
E-SQUO plays a crucial role in our analysis: For any pure
state defined on a general system of interacting qubits one
can prove?® that the square of the distance associated to the
action of the E-SQUO coincides with the linear entropy
S (p)=1-Tr[p;] of the kth qubit (where p, denotes the re-
duced density matrix of qubit k). This quantity, also known
as the tangle 7 in the literature, is an entanglement monotone
for qubit systems and satisfies important monogamy
constraints.>® Being a monotonic function of the von Neu-
mann entropy of entanglement,?! it quantifies the bipartite
block entanglement present in the state |¥) between spin k
and the remaining N—1 constituents, and is thus a proper
measure of single-site entanglement.’? One has the following

relation:28

Ek = arctan(

A3)

Dz(l_]k;

V) = 7y 24| ) = 4Detpy
=1 - 4[>+ (> + (SD°]. (4)

This geometric-operational characterization of the tangle al-
lows to develop a quantum informatic approach to the prob-
lem of characterizing the correlation properties of the ground
state in many-body quantum systems.” Let us consider a
collection of spin-1/2 systems defined on a regular lattice,
with Hamiltonian H, and let |‘I’) denote from now on the
ground state of H. If the system is in the ground state, the
application of a SQUO on a generic spin of the lattice is
necessarily associated to an energy transfer that one must
provide to the system in order to realize the selected SQUO.
In other words, a SQUO perturbs the system, and this per-
turbation results in an increase in the average energy (obvi-
ously, in general the transformed state needs not to be an
eigenstate of the Hamiltonian). Such energy deviation from
the ground state value can be quantitatively defined as

AE(Uy) = AE(6y, ) = (V|UHU W) = (W|H|W).  (5)

Because |W) is the ground state of H, AE(U,) is a non-
negative defined quantity. Considering the special relation
between the E-SQUO and the tangle we may expect that the

associated amount of energy difference AE(U,), appropri-
ately named “entanglement excitation energy” (EXE), will
have as well a strong, direct connection with the tangle and
in general with the single-site entanglement in the ground
state. In fact, starting from the above definition of Eq. (5)
and taking into account the property of the E-SQUO of leav-
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ing unchanged a fully disentangled state, it has been estab-
lished in full generality®® that if the system is invariant under
spatial translation and the Hamiltonian of the system does
not commute with any possible SQUO, then the vanishing of
the EXE is a necessary and sufficient condition to admit a
fully factorized ground state |W).%° Hence, if the system that
we want to analyze satisfies all the former hypotheses, the
vanishing of the EXE provides an additional condition, be-
sides the vanishing of the tangle 7, that one needs to include
in establishing a general analytic approach to the problem of
ground state factorization.

IV. THEORY OF GROUND STATE FACTORIZATION:
GENERAL ANALYTIC METHOD

A. Preliminaries

The general method that was first partially developed in
Ref. 27 for the determination of existence, location, and ex-
act form of factorized ground states rests on the following
two main observations: (i) the ground state | W) of a spin-1/2
Hamiltonian H is factorized if and only if the single-site
entanglement (tangle) 7 vanishes for all spins k in the lattice;
(ii) provided that [H,U,]# 0 for every possible SQUO U,
of the form Eq. (1), the ground state |¥) of a spin-1/2 Ha-
miltonian H is factorized if and only if the EXE AE(U,)
=(V|UHU|V)—(V|H|V) vanishes Vk.

In Ref. 27, the strategy to the determination and under-
standing of factorization for a given Hamiltonian bore on the
above two facts and on the requirement to assume as work-
ing point a phase endowed with some kind of magnetic or-
der. By imposing the vanishing of the EXE and of the tangle,
we showed how to determine uniquely the form of the com-
pletely disentangled state compatible with the assumed mag-
netic order, candidate to be the ground state of the system at
a particular value of the external magnetic field (labeled as
“factorizing field”). The final steps of the procedure concern
the determination of exact analytic conditions for the candi-
date factorized state to be an eigenstate of the Hamiltonian
with lowest energy. In Ref. 27, we derived a closed set of
eigenstate conditions, but establishing whether a factorized
eigenstate is actually a ground state had to be left to a case
by case analysis.

In the present paper we generalize the method, extend its
scope, and apply it to different classes of quantum spin mod-
els. First, we will show that there is no need for a priori
assumptions on the magnetic order. In fact, we will prove
that the existence of a factorized ground state is a necessary
and sufficient condition for the existence of quantum phase
transitions and ordered phases in translationally invariant
quantum spin models with exchange interactions and in the
presence of external fields. Moreover, the actual structure of
the factorized ground state determines automatically the kind
of ordered phase. Further, we derive a complete set of rigor-
ous conditions for the candidate disentangled state to be an
eigenstate and a ground state. In particular, for systems with
no frustration we prove that if the factorized state is an
eigenstate, then it is always a ground state of the system.

B. Quantum spin models on regular lattices

We illustrate the method in detail by considering its ap-
plication to the general, translationally invariant, exchange

PHYSICAL REVIEW B 79, 224434 (2009)

Hamiltonian H for spin-1/2 systems on a D-dimensional
regular lattices, with spin-spin interactions of arbitrary range
and arbitrary anisotropic couplings

1 ! : .
H= 2T SiS|+ I\SiS]+ ISiSj-h2 S;. (6)
il i

Here i (and similarly [) is a D-dimensional index vector iden-
tifying a site in the lattice, S7(a=x,y,z) stands for the spin-
1/2 operator on site i, & is external field directed along the z
direction, r=|£'— [| is the distance between two lattice sites,
and J7, is the spin-spin coupling along the « direction. Trans-
lational invariance is ensured by the fact that all the cou-
plings depend only on the distance r between the spins. This
type of Hamiltonian encompasses a large variety of models
and spans over several universality classes including, among
others, the Ising, XY, Heisenberg, and XYZ symmetry
classes. Besides their importance in quantum statistical me-
chanics and in the theory of quantum critical phenomena,
these models play an important role in the study of various
schemes of quantum information and quantum communica-
tion tasks with quantum many-body systems.'*

It is a rather straightforward exercise to verify that the
Hamiltonian (6) never commutes with the SQUOs U, Vk.
Translational invariance and noncommutativity of the Hamil-
tonian with the SQUOs guarantee that the vanishing of the
EXE is a necessary and sufficient condition for the full sepa-
rability of the ground state [statement (ii) above]. Since the
external field % is uniform on the lattice, it forces the exis-
tence of a site-independent, nonvanishing magnetization M,
along the z axis: (S;)=M_Vk. On the other hand, at a fac-
torization point, statement (i) above imposes the vanishing of
the single-site entanglement on all sites of the lattice. There-
fore, if a factorization point exists, the magnetizations along
the directions orthogonal to the external field must assume
the following form:

(Sp) = Mi=M, cos ¢,

(P =My=M_ sin g, (7)

where M | = \i—M? is the modulus of the projection of the
magnetization on the xy plane and the local orientations ¢y,
and hence the type of magnetic ordering in the xy plane,
remain undetermined. Since M, is site independent, then M |
is site independent as well. Taking into account Eq. (3) of

Sec. III one sees that, at least at the factorization point, G,S,
i.e., one of the two angles that fix the orientation of the

E-SQUO, does not depend on the site index. Therefore 5,_(
=60 Vk.

Collecting the former results and considering that in the
presence of a factorized ground state, if it exists, all the cor-
relation functions are products of single-site expectations
values, we obtain that the condition on the vanishing of the
EXE associated to the generic site k reads
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AE(Uy)

S =0=—sin f(sin OM; — cos QML)(MZE - hf)

+cos OM | (sin OM_—cos 6M )

X (cos @kE Jii €OS @; +sin go,_cz Jp; sin (pi).

_ _ (8)

In the former equation h; is the factorizing field, i.e., the
value, if it exists, of the external field for which ground state
factorization occurs.

Since we are looking for a fully factorized ground state,
Eq. (8) must be satisfied simultaneously for all k and, hence-
forth, Eq. (8) must be site independent. This fact in turn
implies that the following relation must be satisfied by every

angle ¢

cos 901_(2 J; cos ¢;+sin gokz J, sin @; =K. 9)
i . o -

Equation (8) must hold independently of the site in which the
E-SQUO acts and the value of the constant K must be iden-
tified by determining the expression of the energy density,
i.e., the energy per site, associated to the factorized ground
state. Given the total ground state energy E and the total
number of sites N, the latter quantity can be written as

E 1 . 1 .
N EMfE ZJ.—hM + EMi; J, cos ¢ cos ?

r

_ .
+J, sin ¢y sin ®j

1 1
= EMfg ZJ.—hM_+ EMﬁK, (10)
where Z, is the coordination number, that is the number of
sites at distance r from a given site. In order to determine the
magnetic order in the candidate factorized ground state, one
can now exploit the fact that, by definition, it must minimize
the energy of the system. Therefore such state will be simply
characterized by the magnetic order that minimizes the per
site contribution K, depending on the Hamiltonian param-
eters and the geometric structure of the lattice. Thus the gen-
eral conditions for full separability of the ground state lead to
the uncovering of the magnetic order in the xy plane. In the
original formulation of the quantum informatic method®’ one
had to assume from the beginning the type of ordered phase,
and this resulted in constraints on the magnetization and
limitations in the range of the coupling coefficients.

C. Magnetic orders and factorization

The outcome of the minimization of the energy density
depends on the presence or the absence of frustration in the
system, either due to the lattice geometry, or to the structure
of the Hamiltonian, or to both causes. For Hamiltonians be-
longing to the class of Eq. (6), frustration can be due both to
the geometry of the lattice, e.g., for systems with nearest-
neighbor antiferromagnetic interactions defined on a lattice
that admits closed loops with an odd number of spins, and to
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the competition of interactions of different spatial orders,
e.g., in systems defined on linear chains with nearest-
neighbor ferromagnetic and next-nearest-neighbor antiferro-
magnetic interactions. Frustration effects in systems with in-
teractions of different spatial ranges arise whenever it
happens that the minimization of the energy associated to
interactions over a certain spatial scale precludes the possi-
bility of minimizing the energy associated to interactions
over a different spatial scale. In the absence of frustration,
i.e., when the lattice geometry and the interactions between
the spins are such to allow all energy minimizations simul-
taneously, it is straightforward to prove that every possible
factorized ground state must be characterized by one of only
four magnetic orders out of the many possible ones. The
complete proof of this statement is reported in Appendix.
This restricted set includes ferromagnetic ordering along the
x direction (¢=0Vk) or along the y direction (¢
=/2V k), and antiferromagnetic ordering along the x direc-
tion (¢u=|k|mVk) or along the y direction (@,=(7/2)
+|k|mV k). By requiring the minimization of the energy per
site, Eq. (10), the type of order effectively present in the
ground state can be determined by comparing the values of
the different “net interactions” along the x and y directions,
where the net interactions are defined as follows:

o0

To=2 (-1)ZJ%;

r=1

Th=2 20, (11)

with a@=x,y. The net interaction along the z direction is de-
fined equivalently as

Tr=227,I. (12)
r=1
As a function of the net interactions, the magnetic orders in
the system are determined by the values of u
=min{\7§a\73’\7§’\73}
jf = Ferrom. order along x;
jf = Ferrom. order along y;
m=y (13)

J* = Antiferrom. order along x;

j;‘ = Antiferrom. order along y.

It is interesting to observe that, in terms of the net interac-
tions, one can immediately establish the presence or absence
of frustration in the system: any frustration arising from the
presence of competing interactions would imply that u#
-3,Z,|J"|, with a=x,y depending on which of the two axes
is characterized by a nonvanishing value of the magnetiza-
tion. We remark that here and in the following we are not
considering the particular situation in which a saturation oc-
curs rather than a true ground state factorization: This in-
stance will be discussed separately in Sec. IV D.

From now on, without loss of generality, we will special-
ize our analysis to the the case of an antiferromagnetic or-
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dering along the x direction. With trivial modifications, all
the steps and results that will be obtained in the following
hold as well in the remaining three cases of Eq. (13). At the
end of the procedure we will present a summary table col-
lecting the main results for all the four types of magnetic
orders compatible with factorization.

Given an antiferromagnetic ordering along the x direction,
and keeping in mind that in such case ¢ =|k|mVk, Eq. (7)
implies that M,=0 while Mj=*M = *M, with M,=M,
=0. The =+ sign reflects the fact that the antiferromagnetic
order discriminates between two sublattices, each character-
ized by the opposite sign of the staggered magnetization
along x. Consequently, the general condition Eq. (8) takes
the form

0= (sin OM, - cos OM,) X [cos GMXJ?— sin H(szf—hf)],

(14)
that admits two solutions for 6,
M, TM,
tan = —; tan 0= ——"T—. (15)
M, TEM— Iy

However, since the E-SQUO must be unique,28 the two so-
Iutions must coincide. Factorization thus requires that

h
VAN

Moreover, the requirement of a vanishing tangle (single-site
entanglement) imposes

M.= (16)

1 4h2
MX=E l—m. (17)

Combining Egs. (16) and (17) via Eq. (3) yields a closed
expression for the phase 6 as a function of the Hamiltonian
parameters and of the factorizing field A,
2h,
cos = ——1—. (18)
T =T

Therefore, Eq. (18), together with the knowledge of ¢
= mlk

, once inserted into Eq. (2), determines, independently
of the value of the magnetizations, the form of the E-SQUO
at factorization:

O, = cos 0S5 + ¢'% sin 6. (19)

The form of the candidate factorized state |‘I’f) is then
readily determined by imposing that the action of the
E-SQUO on all lattice sites leaves the ground state invariant

@20,|¥)) = V). (20)

From Egs. (20) and (19) we find then that the candidate
factorized ground state |\Iff> has to be a tensor product of
single-site states that are the exact eigenstates of the opera-

tors 61; with eigenvalue 1/2

|W ) = ‘%WIQ;

PHYSICAL REVIEW B 79, 224434 (2009)

i) = cos(0/2)|1,) + "% sin(6/2)[| ). (21)

Equation (21) expresses the general form that a factorized
ground state must assume given an antiferromagnetic order
along x. This result is independent on the actual values as-
sumed by the staggered magnetizations M ,’s. We remark that
in order to establish the general form of the candidate ground
state it is essential to impose the vanishing of the EXE. In
fact, without requiring it, the phase # and the candidate fac-
torized ground state become explicitly dependent on the
magnetizations. Then, imposing the conditions for Eq. (21)
to be an eigenstate of the Hamiltonian, one merely obtains a
relation between the factorizing field &, and the magnetiza-
tions M ,’s. If the analytic expression of at least one of the
M ’s is known, it is still possible to obtain an expression of
the field A in terms of the Hamiltonian parameters. How-
ever, this actually occurs in few special, exactly solvable,
cases (for instance, the XY model3?). Otherwise, in general
one needs to resort to numerical evaluations of the magneti-
zations or introduce other approximations in the analysis.
This problem is completely eliminated in the general analytic
framework based on the invariance of the factorized ground
states under the action of E-SQUOs and on the vanishing of
the EXE at factorization.

Before proceeding further let us clarify a relevant point.
Because of the even-odd symmetry of the energy spectra of
the system, as elucidated also in Refs. 22 and 23, the assign-
ment of one of the two different staggered magnetizations to
each sublattice is arbitrary. According to this observation,
one sees that, inverting the sign of the magnetization along
the x direction on each site, all the conditions for factoriza-
tion are still satisfied but the candidate ground state takes the
form

W)= %Itﬁ;;);

i) = cos(812)[1) + €"%x1 sin(612)] ). (22)

Obviously the two states in Egs. (21) and (22) are distin-
guishable and both |¥y) and [W}) are legitimate candidate
ground states of the system, as well as general linear combi-
nations of the two (the latter will be in general highly en-
tangled). Here and in the following we assume to be working
in a situation of broken symmetry, i.e., after that a small
perturbing external field along the x direction has lifted the
degeneracy between |\I’f) and |\Ifji>, e.g., lowering the energy
of the former and rising that of the latter. After a time long
enough to ensure convergence to equilibrium, i.e., relaxation
to the state |‘I’f), the perturbation is switched off: in the ther-
modynamic limit, this ensures that the system will remain
indefinitely in the state [¥)).

Having determined the exact form of the candidate factor-
ized ground state, the subsequent step concerns the determi-
nation of the conditions for its occurrence, i.e., the conditions
under which a state of the form (21) is indeed the eigenstate
of H, Eq. (6), with the lowest energy eigenvalue. To this aim,
taking the value of the external field at the factorization
point, h=hy, it is useful to decompose the total Hamiltonian
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as a sum of pairwise Hamiltonian terms H;
=X;H;;, where each term H, ;
freedom of a single pair of splns

1> SO that H|)- -
involves only the degrees of

;=TS + TS +

IS - H(Si+ ). (23)

Here the quantity h} plays the role in the “component” of the
factorizing field that acts on the selected pair of spins and
obeys the following relation:

2hy=cos O(J,— (= 1)'J). (24)

The above ensures that h;=%,Z,h satisfies Eq. (18). Proving
that the candidate factonzed ground state |‘I’f) is an eigen-
state of the total Hamiltonian H is equivalent to prove that it
is a simultaneous eigenstate of all pair Hamiltonians Hj;, or,

more precisely, that the projection of |\Iff> onto the subspace
of two given spins / and j—which is still a pure state since
|\Iff> is a tensor product of single-spin pure states—is an
eigenstate of H,; for every pair {i, Z}. To proceed, we associ-

ate to each lattice site a set of orthogonal spin operators
defined as follows:

A =cos 0 cos ¢S] - sin 6S};
Ay = COS QDIS\

A} =sin 0 cos @;S; +cos 6S;. (25)

It is immediate to observe that Ai—OZ By inverting Eq.
(25), we can conveniently re-express the standard spin op-
erators as functions of the new set of operators {A{}

S; =cos ¢;(A} cos 6+ A] sin 6);
S,y =Az-‘ cos ¢;;

S¢=—A] sin 0+ A cos 0. (26)

Inserting Eq. (26) in Eq. (23) we obtain the expression of the
pair Hamiltonian H;; as a function of the sets of operators

{A]"} and {A;‘}
1
= AfA;’-[cos2 6J. + sin” 0J.(- 1)"] - 2h sin 0[Af<AJZ- - 5)

1
+ (Aj 2>A*} +AA}(sin® 6J7 + cos® 6(— 1)"J7)

+AJAJT (= 1)" = hy cos 0(A§-+A§), (27)

L%y

where we recall that r is the distance between sites i and j
and that, in the presence of an antiferromagnetic order along
the x direction, cos ¢; cos ¢;=(~1)". The spin-pair projection
|y of |W) is an eigenstate of the pair Hamiltonian H;;
either if all terms in Eq. (27) admit |14)|1,) as an eigenstate
or if they annihilate it. By construction, recalling that Aj

Eéi and that |¢i> is the eigenstate of A; with eigenvalue
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equal to 1/2, the spin-pair projection of |‘I’f) is an eigenstate
of the pair Hamiltonian if the following condition holds:
cos® J + (- 1)"sin’ 01, J;,=0. (28)

For general models of the type (6) with a given, arbitrary,
maximum spatial range of interaction s, Eq. (28) admits the
following solution:

J (=1
cos? 0=—)(—)f, (29)
-1

for all distances r=s, i.e., for all distances associated with
nonvanishing couplings (we recall that J/,=0V« and Vr
=gs+1). The set of Eq. (29) determines the conditions that
must be satisfied simultaneously by the phase 6, which is
unique, in order for |‘I’f) to be an eigenstate of the total
Hamiltonian (6). Equation (29) discriminates quite clearly
between short-range models, i.e., models with only one non-
vanishing coupling at r=s=1 (models with nearest-neighbor
interactions) and all other possible models containing finite-
or infinite-range interaction terms. Specifically, models with
only nearest-neighbor interactions are characterized by the
fact that Eq. (29) reduce to a single condition and hence if
the value of the right-hand side (rhs) of Eq. (29) falls in the
interval [0,1] (associated to the permitted values of cos® 6 in
terms of the interaction parameters), one can immediately
conclude that the models under investigation admit a factor-
ized eigenstate. On the other hand, for models containing
interaction terms of longer range—so that Eq. (29) include
two or more conditions—factorized energy eigenstates are
allowed if and only if the rhs of all conditions in the set Eq.
(29) take values in the interval [0,1] and, moreover, they all
coincide.

Summing term by term over the index r all the relations in
Eq. (28), taking into account Eq. (18), and solving for &, one
eventually obtains the exact expression of the factorizing
field as a function of the net interactions

=T~ T T, (30)

We remark that Eq. (30), which was derived in Ref. 27 using
some unnecessary auxiliary assumptions, is completely gen-
eral and holds for lattices of arbitrary spatial dimension and
for spin-spin interactions of arbitrary range. Accordingly, the
angle 6 that determines the direction of the E-SQUO can be
also expressed as a function of the net interactions as fol-
lows:

=T
=T

In the case of a maximum range of interaction s =2, relation
(31) for the net interactions is a necessary but not sufficient
condition for factorization, and further use of Egs. (28) and
(29) is needed, as we will show with explicit examples in
Secs. VI and VIIIL

We are finally left with the problem of establishing con-
ditions for a factorized energy eigenstate |‘I’f) to be indeed a
ground state of the system. A very simple sufficient but not

cos 0= (31)

224434-8



SEPARABILITY AND GROUND-STATE FACTORIZATION...

PHYSICAL REVIEW B 79, 224434 (2009)

TABLE 1. Summary of results for the four magnetic orderings [Eq. (13)] compatible with ground state

factorization.

Magnetic order cos® 0

Factorizing field &,

Single-spin state [¢;)

n=J; -k
(=172
u=J; T T =TT -TD)
S [F N A
szf Jr—Jr %V(jf_jf)(jf_jf)
- (=1
H=dJy Ji=(=1)7;

ST =INT-T5)

cos(6/2)|7p)+sin(6/2)]] )
cos(6/2)|1+(=1)¥sin(6/2)| | )

cos(0/2)[1)+i sin(6/2)] 1)
cos(6/2)|T)+(=1)i sin(6/2)[ | )

necessary condition is that the spin-pair projection of |\Iff>
onto the subspace of a pair of spins be the simultaneous
ground state of every pair Hamiltonian H;;. In fact, given the
relation existing between all the pair Hamiltonians H i in Eq.

(23) and the total Hamiltonian H in Eq. (6), it follows that
the simultaneous ground state of all pair Hamiltonians H;; is
also ground state of H. To proceed, let us re-express the pair
Hamiltonians (27) in matrix form in the basis spanned by the
eigenstates of the operators A; ® Aj. One has

a.—hy 0 0 0
0 -a, J/2 .
i 0 2 -—a  —(-1VB,
0 B -CUB an+h

where ag:};[cos2 6J.+(=1)"sin” 6J7] and B,=hy sin 6. Mak-
ing use of Egs. (24) and (31) the eigenvalues of the matrix
Eq. (32) can be put in the form

g = 5[3(— DT =Jl = (= (= 1) T)cos(26)],
1= M 1V = (L (= 1 eos20)
2= 330 DY+ ) + U (- 1 eos(20)]

3= -3 VL4 S+ (UL (- 1V eos(26)]. (39)

The eigenvalue g is the one associated to the projection
l)eh) of the factorized eigenstate |W,) onto the four-
dimensional Hilbert space associated to the pair of spins
{S;,S,}. Therefore, the spin-pair projection is the ground state
of the pair Hamiltonian if sy={e,,&,,e;}. Imposing this
condition yields the following inequalities:

i+ )= (- 1)) = 0; (34)

(- 1) T-J =0 (35)

Notably, these inequalities are automatically satisfied for any
interacting spin system that is not frustrated and that verifies
all of the Eq. (29). Namely, for every even value of the
distance r in the interaction range (r=s) Eq. (35) implies

that the denominator in the corresponding Eq. (29) is non-
positive. Therefore, an acceptable value of cos” # can be ob-
tained only if also the numerator is nonpositive and exceeds
or equals the denominator. These conditions in turn imply the
order relation, Ji=J\. On the other hand, comparing Egs.
(34) and (35), one has that J;S—J;. Therefore, comparing
the two order relations yields finally J;=-|J;| (- even). This
condition is always verified in systems with an antiferromag-
netic order along the x direction and in absence of frustration
and therefore the projection of the factorized energy eigen-
state on the Hilbert space of every pair of spins is indeed the
ground state of every pair Hamiltonian. On the other hand, in
the case of odd r, Eq. (35) implies that the denominator of
Eq. (29) is non-negative and, similarly to the former case, the
numerator must be non-negative and not exceeding the de-
nominator. Hence we obtain J'.=J! while from Eq. (34) we
recover J,=—J, that, in turn, implies J,=|J;|. Again, such
inequalities are always verified in the presence of an antifer-
romagnetic order and in the absence of frustration.

Collecting all these results, we have proved that the fol-
lowing holds:

Theorem. For any cooperative system of spin-1/2 particles
described by Hamiltonians H of the type [Eq. (6)], charac-
terized by an antiferromagnetic order along the x axis as
emerging from Eq. (13) and in the absence of frustration, the
simultaneous verification of all Egs. (28) is necessary and
sufficient for the fully factorized state Eq. (21) to be the
exact ground state of H when the external magnetic field
takes the value h=h determined by Eq. (30).

This central result holds as well, with obvious modifica-
tions, when one considers the other different ordered phases
that form the set identified in Eq. (13). In Table I we sum-
marize and compare results for each of the four different
possibilities.

D. Factorization, balancing, and saturation

Before moving to apply the general method to specific
models and examples of conceptual and physical relevance,
we discuss briefly the meaning of factorization and its
marked differences with the phenomenon of “saturation”
(see below). As we have seen, and as it will appear even
clearer in the discussion of the examples in the following
sections, the physical mechanism of ground state factoriza-
tion in quantum spin systems is due to a delicate kind of
“balancing” between the coupling strengths that regulate the
intensity (and range) of the interactions and the aligning ef-
fect of the external field, that tend to orient all spins along a
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given direction and to destroy all quantum correlations. The
remarkable aspect of factorization is that then it occurs, ac-
cording to well-defined conditions and constraints, at pre-
cisely defined, finite values of the couplings and of the fields
in an ordered (or symmetry broken) phase. This means that
factorization occurs when the system is relatively strongly
interacting and the external aligning field is relatively weak.
Moreover, we will see that the factorization point is always a
precursor from below (from the ordered phase) the quantum
critical point, as first observed for the XYZ model with
nearest-neighbor interactions.?!

Saturation is the phenomenon of ground state factoriza-
tion that occurs trivially when the value of the external field
grows unboundedly compared to all other Hamiltonian pa-
rameters. Therefore its aligning effect on the spins prevails
against all other effects and quantum correlations are sup-
pressed. The main physical difference between proper factor-
ization and saturation is then clear and is reflected at the
level of the Hilbert space of states. Namely, suppose that the
system under study admits a fully factorized state that is the
true ground state of the system at A=h, Then, when one
moves away from the factorizing field, i.e., when h—hfze
#0, the factorized state ceases to be an eigenstate of the
Hamiltonian. On the contrary, in the presence of saturation,
the trivially ensuing factorized state is always an eigenstate
of the Hamiltonian and remains the ground state of the sys-
tem when perturbing the value of the external field 4.

Let us formalize the above discussion. Consider a system
that admits a fully factorized ground state. In this case the
pair Hamiltonian in Eq. (27) admits as eigenstate a factorized
spin-pair state. However, Eq. (27) is the expression of the
pair Hamiltonian only at 4=h,. If we consider a value of the
external field different from the factorizing field we must
include in Eq. (27) a term proportional to (A;—Af)sin 6(h
—hy). Obviously, for nonvanishing values of sin ¢ the pres-
ence of such term prevents the factorized state from being an
eigenstate of the Hamiltonian of the system. On the contrary,

if sin =0 and hence if 5,SES§VI_c the extra Hamiltonian
term vanishes and the factorized state ®,|7), remains an
energy eigenstate of the system for all values of the external
field. This result can be understood from a different point of
view. When 6=0, from Eq. (29) we immediately obtain that
J.=J}, which implies that the total magnetization along the z
axis is preserved, [H,Z,S}]=0. Therefore the Hamiltonian of
the system and the total magnetization operator admit a com-
plete set of common eigenstates, discriminated by the eigen-
value of the total magnetization: the factorized state is the
one (and only one) characterized by the maximum eigen-
value.

We now move on to show that the factorized eigenstate, in
the case of saturation, is the system’s ground state in an
infinite range of values of the external field. Here and in the
following we recall that since the external field is directed
along the conventional z direction, only saturation with spin
alignment along the z axis is allowed. At very low values of
h the ground state of the system will possess a small total
magnetization along the field direction. However, as & in-
creases, also the total ground state magnetization along the z
direction will increase until all spins align with the field and

PHYSICAL REVIEW B 79, 224434 (2009)

saturation occurs. By increasing 4 further, it is not possible
for the system to evolve in a state with higher values of the
magnetization along the field direction. Hence, the factorized
state remains the ground state of the system for all values of
the external field &= h,, where by h, we denote the value of
the field for which the system reaches saturation (“‘saturating
field”). Let us consider the matrix representation, similarly to
Eq. (32), of the pair Hamiltonian at arbitrary values of .
Taking into account the condition sin #=0 we have

Ji4—1" 0 0 0
0 -Jy4, T2 0
Hy= , (36)
/ 0 S22 -Ju4, 0
0 0 0 JU4+h]

It is immediate to verify that if h"=|J|/2+J./2=h!, the pro-
jection of the factorized state onto the considered pair of
spins is associated to the lowest energy. Resumming over all
values of the spatial range index r and taking into account
the coordination number Z, of the lattice, we have that the
factorized state is the ground state of the total system if

h=h,= %(E FAVARS 2 ZJ;). (37)

Equation (37) is the rigorous condition for saturation. We
notice that it coincides with Eq. (30) in the limit J;—>J;,
meaning that in this simple instance no ground state factor-
ization occurs other than saturation.

In the following sections we apply the general theory of
factorization to different quantum spin models. We will de-
rive a series of exact results concerning the occurrence of
factorized ground states in systems with various types of
two-body interactions of different spatial ranges defined on
regular lattices of arbitrary spatial dimensionality. The gen-
eral method enables to determine many exact factorized
ground state solutions as well as the existence and the nature
of ordered phases in models that are, in general, nonexactly
solvable. Moreover, it allows to recover quite straightfor-
wardly the existing analytical and numerical results. In the
process, we will come to appreciate that ground state factor-
ization is a phenomenon more common than previously be-
lieved. Determining the existence of exact factorized solu-
tions in nonexactly solvable models should in turn allow to
envisage controlled approximation schemes, e.g., perturba-
tive or variational, to investigate the physics of nonexactly
solvable quantum spin models in the vicinity of quantum
factorization points.

V. MODELS WITH SHORT-RANGE INTERACTIONS

In this and in the following sections we will consider
quantum spin models of the XYZ type Eq. (6) defined on
regular lattices of arbitrary dimension. Let us first consider
models with short-range interactions including only nearest-
neighbor couplings

Jl=J, JI,=0, Vr=2 (38)

As in Sec. IV we restrict ourselves to the case in which such
models are defined on regular lattices of a generic dimen-
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JulJ;

FIG. 1. (Color online) Diagram of ground state factorization as
a function of the ratios J,/J; and J,/J.. The coupling J, is set to be
positive for reference. Analogous results hold in the case J,<<0.
Blank regions: no factorization allowed. Rightmost (yellow) shaded
region: presence of a fully factorized ground state supporting an
antiferromagnetic order along the x direction. Leftmost (light blue)
shaded region: fully factorized ground state with a ferromagnetic
order along x. Bottommost (light red) shaded region: Fully factor-
ized ground state with a ferromagnetic order along the y direction.
Topmost (light green) shaded region: fully factorized ground state
with an antiferromagnetic order along y. The solid line J,=J, cor-
responds to models that exhibit saturation rather than true factoriza-
tion; the dashed line Jy=—J, accommodates for models with unre-
solved superpositions of two fully factorized ground states each one
supporting a different magnetic order. Either one of the two possible
ground states is then “chosen” by the system depending on the way
the symmetry is broken, see text for further details. All plotted
quantities are dimensionless.

sion, whose geometry does not induce any frustration, i.e., in
which any closed loop is characterized by an even number of
spins. The absence of geometrical frustration together with
the fact that all the couplings beyond the nearest-neighbor
spins vanish, ensure that it is always possible for the system
to satisfy all the conditions on the net magnetic interactions.
Therefore, as shown in Sec. IV, if the rhs of Eq. (29)—or,
better, if the rhs of the equation relative to each possible
magnetic order (See Table I) takes an acceptable value (0
=rhs = 1)—then the system admits a fully factorized ground
state. In the case of antiferromagnetic ordering along the x
direction, which is obtained if J,=|/,|, from Eq. (29) it fol-
lows that a factorized ground state exists if J,=—J_. Analo-
gous conditions are obtained for the other types of magnetic
orders compatible with full ground state separability. The
results are summarized in Fig. 1, where J, is set assume
positive values for reference. A very similar diagram of fac-
torization holds in the case J,<0.

As one can see from Fig. 1, the type of magnetic order
corresponding to the factorized ground state determines four
different regions in the space of the Hamiltonian parameters
(one for each different ordering) associated to the existence
of a factorized ground state. The four different domains of
the interaction parameters are separated by two bisectrices
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that individuate special cases. The line J,=J, is constituted
by the set of points in which saturation occurs in place of
genuine factorization (see Sec. IV D). On the other hand, the
line J,=—-J,, —1=J,/J,=1, corresponds to models that, for
a given value of the factorizing field hy and of the E-SQUO
orientation #, admit two degenerate, but distinct factorized
states. The choice of the ground state is then determined by
the usual mechanisms of symmetry breaking: if an infinitesi-
mal magnetic field is applied in the xy plane, the axis of
magnetic alignment in the ground state is determined by the
order in which the two limits #,— 0 and h,— 0 are realized.

It is important to observe that all the shaded regions of
Fig. 1 correspond to exact analytical ground state solutions
of the investigated short-range models, which are, in general,
nonexactly solvable. The exact, fully factorized ground states
are tensor products of the form reported in the fourth column
of Table I, in which the value of the orientation parameter 6
of the E-SQUO is retrieved by solving the equation in the
second column of Table I. Obviously, such an exact solution
holds only at the factorizing field 2=h. In the case of anti-
ferromagnetic order either along the x or the y direction, the
latter is given by (see Table I)

zZ —
hy= 31 VU + )y + ), (39)

while in the case of a ferromagnetic phase, again unrespect-
fully if along x or along y, it reads

Zy
hy= SN = 1)U, = ). (40)

Given that the ground state is known exactly at the factor-
ization point, all the relevant physical observables can be
evaluated straightforwardly. For instance, the ground state
energy density at factorization reads

E Z
N:-?(unyuz) (41)
in the presence of an antiferromagnetic ordering, while in the
ferromagnetic case it is
E Z
]leg(Jx+Jy—Jz). (42)

Both the factorizing field and the ground state energy,
unlike the E-SQUO orientation € and the expression of the
factorized ground states, are functions of the number of near-
est neighbors per site (the coordination number Z;, where the
index 1 denotes the nearest-neighbor range of the interac-
tions). Hence, they depend on the geometry and the spatial
dimension of the lattice. To begin with, let us consider one-
dimensional lattices (spin chains, D=1), for which the coor-
dination number Z;=2. Substituting this value in the previ-
ous equations, we immediately recover, among others, the
value of the factorizing field and the ground state energy
obtained analytically by Kurmann et al. for the XYZ spin
chain using the direct method.?’ Kurmann et al. had to re-
strict their investigation to coupling constants J,, taking val-
ues in the interval [0,1], thus establishing ground state fac-
torization only in a restricted set of conditions. Instead, the
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general method allows to assess the occurrence of factorized
ground states associated to different types of magnetic order-
ings in the entire region of the Hamiltonian parameters.

One of the most important advantages of the general
method is that it is easily applicable irrespective of the spa-
tial dimensionality, while the direct method becomes increas-
ingly difficult to apply with growing spatial dimensions of
the lattice. Numerical techniques can overcome some of the
limits of the direct method, although they fall short of the
power and extension of the general analytic method. The
most important numerical result has been obtained by apply-
ing quantum Monte Carlo techniques to the study of the XYZ
model in D=2 space dimensions (square lattice).?! Applying
the present method to the XYZ model on the square lattice
allows not only to immediately reobtain analytically the pre-
vious numerical findings but also, again, to extend the inves-
tigation to the entire space of the Hamiltonian parameters by
simply taking into account that for the square lattice Z,=4.
Moreover, the flexibility of the general method allows to
include in the analysis of different planar models. For in-
stance, considering models defined on planar hexagonal lat-
tices, the previous analysis needs to be modified only in that
the value of the coordination number, in this case is Z;=3.

Let us now move to D=3 and investigate ground state
factorization in nearest-neighbor XYZ models on three-
dimensional regular lattices, for which there were so far no
results (apart the preliminary ones obtained in our previous
work?’) either analytic or numerical (such a task would be
extremely demanding if approached either via the direct
method or via numerical techniques). Resorting to the gen-
eral method, we can instead fully characterize the factorized
ground state and the associated physical quantities just by
entering the correct value of the coordination number, e.g.,
Z,=6 for a simple cubic lattice. Obviously, the results extend
straightforwardly also for models defined on lattices of arbi-
trary higher dimension D> 3.

VI. MODELS WITH FINITE- AND LONG-RANGE
INTERACTIONS

The analytic method can be applied with minor complica-
tions to models with interactions of longer spatial range. As
already mentioned in Sec. IV, concerning ground state fac-
torization, the main difference between models with short-
and finite-range interactions is that for the latter there exist
more than one equation in the set Eq. (29). Each of these
equations is associated to a different value of the range r
=s, where s is the maximum interaction range, that is the
maximum distance between two directly interacting spins: all
the couplings vanish for pairs of spins with interspin distance
greater or equal to s+1.

Clearly, the fact that all the equations have to be solved
simultaneously yields tighter conditions on factorizability
compared to the case of models with nearest-neighbor inter-
actions. Namely, it is not sufficient that the rhs of each Eq.
(29) takes values in the interval [0,1]. Tt is also necessary to
require that all these values coincide. This constraint yields a
set of further conditions that must be satisfied by all the
nonvanishing couplings. For instance, let us suppose that the
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system is in an antiferromagnetic ordered phase along the x
direction. Labeling by ¢ the value of cos® # and imposing
that for every r the rhs of Eq. (29) must equate ¢, we find that

Jy=cli+ (=)' (1-c)J, Vr=s, (43)

where, to ensure the absence of frustration, J; must obey
the following inequality: (=1)'J,=J.(c-1)/(1+c) Vr=s.
Analogously, for an antiferromagnetic order along y

Ji=e/i+ (=)' (1-¢)J. Vr=s, (44)

and to exclude frustration we must also have that (-1)"J}
=J(c=1)(1+c) Vr=s.In the presence of a ferromagnetic
phase, respectively, for an ordering along x and along y, the
constraints and the no-frustration condition become

c—1
Jy=cli+(1=c)J; J;STJ; Vr<s; (45)
c
c—1
Jo=cli+(1=c)J, J;S—Jf Vr=<s. (46)
z e

Equations (43)—(46) generalize the instance analyzed in Ref.
27, in which we limited the analysis to the case of vanishing
J, that, according to Eqs. (43)—(46), implies c=J"/ J;, for all
r=s.

Especially in the presence of a ferromagnetic order in the
lattice, Egs. (45) and (46) allow us to simplify the expres-
sions of both the factorizing field and the energy per site.
Namely, taking into account the definition of the ferromag-
netic net interactions Eq. (11) and the expression of the fac-
torizing field in the presence of a ferromagnetic order (see
Table I), we have

hy=\e(TE - T,
hy= (T - T, (47)

respectively, for an order along the x and the y directions.
Similarly, for the energy density we obtain

]%:(1+c)jf—cjf,

S=(+ 0T el (48)

We now discuss a specific example (out of many possible
ones) which demonstrates the power of the analytic method
in conditions where the more conventional direct approach
based on the factorized ansatz of Refs. 20 and 23 is com-
pletely ineffective without the supplement of a remarkable
intuition in guessing the correct forms of the possible factor-
ized ground states. Let us consider a XYZ-type spin model
defined on a spatially isotropic cubic lattice of arbitrary size,
possessing nearest-neighbor and next-nearest-neighbor inter-
actions, and admitting arbitrarily different couplings along
the x, y, and z directions. The coordination numbers associ-
ated to the two types of interactions can be straightforwardly
computed from the geometry of the problem and are Z;=6
and Z,=18. Suppose the model is deduced from an explicit
experimental realization of a spin lattice and we are provided
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with explicit values of the various interaction strengths. For
example, Ji=1, J;=03, Jl= 04 J:=-0.6, J:=-0.25,
J2 0.1. The apphcatlon of our “on- demand” ground state
factorlzatlon search engine is now immediate. From Eq. (13)
we have that the candidate factorized state must possess an-
tiferromagnetic order along the x direction. Therefore the
general conditions for the existence of a factorization point,
as determined by Eq. (29), can be summarized as follows:

L+Jl R-T

1 1 2 2

) ) N HIL=3(5-0)
VAR R
X y z

=T, 2_ 2y
Jo+J, =30 =T7)

(49)

This condition must hold together with the frustration-free
constraint. It is readily verified that cos®> #=0.5 provides a
solution to the combined set of necessary and sufficient con-
ditions for ground state factorization. Therefore if the experi-
mentalist tunes the external field 4 at the factorizing value
hy===17.425, obtained from Eq. (30), the engineered cubic
spin lattice system will relax in a completely factorized
ground state of the form gﬂen in Table I (second row, last
column) with #=arccos(10.5).

Many other applications can be considered to models with
arbitrary spin-spin interactions of longer range, and they can
be treated with the same simplicity within the framework of
the general analytic method. For instance, a very interesting
example of a model with infinite-range interactions will be
treated in the next section. However, before moving to the
study of this case, we should comment on the important issue
of the interplay between factorization and frustration in
quantum spin systems with multiple spatial scales of interac-
tion.

The investigation of general models including many inter-
action terms of different spatial ranges needs to be carried
out with particular care, because the interplay between the
different interactions can lead in general to important effects
of frustration that tend to suppress the occurrence of ground
state factorization. The very delicate and tricky nature of the
problem is at the origin of a recent incorrect prediction about
the existence of factorized ground states in one-dimensional
XYZ models on finite rings with long-range interactions, ob-
tained exploiting the direct method.* In Ref. 34 Giorgi, re-
sorting to the direct method, concludes that all the factorized
energy eigenstates in one-dimensional long-range XYZ mod-
els, with interaction terms of spatial ranges that are in integer
ratio with the total number of sites, are also the states of
lowest energy. However, the proof of this statement obtained
using only the direct method requires that there must be no
frustration in the system.?’ Unfortunately, the interplay be-
tween the interactions of different spatial range can in gen-
eral introduce frustration effects (e.g., in the case of antifer-
romagnetic nearest-neighbor and next-to-nearest-neighbor
interactions, and so on). The existence of these effects nulli-
fies all proofs, based on the direct method, of the existence of
fully separable ground states. In fact, immediate counterex-
amples can be given of fully factorized energy eigenstates
that are not ground states. Let us consider, for instance, an
XY model on a finite ring of six spins with nearest-neighbor
and next-to-nearest-neighbor antiferromagnetic interactions,
and Ji=1, J;=03, J;=0.6, J;=0.18. Following Ref. 34,
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this model should admit a factorized ground state. In fact, a
factorized energy eigenstate with antiferromagnetic order
does indeed exist, with an energy E=-0.78. However, solv-
ing the model by exact diagonalization yields that the lowest
energy is E=-1.11 and that the associated ground state is
entangled. Essentially the same type of counterarguments
nullifies a recent claim that the factorized energy eigenstates
are the factorized ground states of mixed spin models of
ferromagnetism of the XYZ type.>> A general analysis of
ground state factorization in ferrimagnetic models with
mixed spin-1/2-spin-1 interactions will be presented
elsewhere,*® based on a proper extension of the formalism of
SQUOs to include spin-1 systems, as sketched in the final
part of Ref. 28.

In conclusion, the study of factorization in quantum spin
models with many different finite- and long-range interaction
terms requires a very careful analysis and the use of the
general analytic method whenever frustration effects are
present. A rigorous and systematic study of the crucial (and
subtle) interplay between frustration and factorization in
quantum spin systems will be the subject of a forthcoming

paper.’’

VII. LIPKIN-MESHKOV-GLICK MODEL

A very interesting limit of the cases analyzed in Sec. VI is
given by models with infinite range interactions, such as the
fully connected or Lipkin-Meshkov-Glick (LMG) model,?
extensively studied in condensed matter physics,263%40
which is described by the following Hamiltonian

- X Qe vy _ 1 z
H=- “N EMS%+A&w ngp (50)
with 0=A=1. The prefactor 1/4(N-1) (with N denoting
the total number of spins) ensures the linear divergence of
the ground state energy as N increases. Let us remark that
normalizing the interaction part of the Lipkin-Meshkov-
Glick Hamiltonian requires some care: being a connected
interaction, it scales as N X (N—1), i.e., as the product of the
total number of spins and the number of pairs of spins.
Therefore, to ensure that the interaction energy is extensive,
i.e., scales with N, the interaction part of the Hamiltonian
must be normalized by N— 1. Usually, for calculational ease,
the interaction part is normalized by N, so that it scales as
N-1. Using this convention is strictly speaking incorrect, but
is clearly harmless for large N and in the thermodynamic
limit. For instance, concerning the separability of the ground
state, it introduces a slight, spurious N dependence of the
factorization point through the multiplicative factor (N
—1)/N, and the error vanishes in the thermodynamic limit.
However, on fundamental physical grounds, the factorization
points of translationally invariant systems, if they exist, must
be independent on the size of the system, and must take the
same value both at finite N and in the thermodynamic limit.
Applying the Kurmann-Thomas-Miiller factorized ansatz>°
and the 1/N normalization, Dusuel and Vidal?® obtained an
analytic expression of the factorizing field for the LMG
model that is N dependent through the multiplicative factor
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(N-1)/N. Although defined according to an anomalous con-
vention, this result is essentially exact in the limit of large N.
We first observe that the LMG model in Eq. (50) can be
obtained as the limiting case of a generic model described by
Eq. (6) assuming that the range of interactions diverges (i.e.,
s— o) while the individual strengths become independent on
the distance (J/,=J,), scale with N(J,*1/N), and vanish
along the z direction (J.=0). Therefore, assuming J.=-2/N,
Jy==2A/N, and J,=0 in Eq. (6) we recover Eq. (50).

" Because of the sign of the interactions and of the range
of values that can be assumed by A, we immediately obtain
that the energy per site Eq. (10) is minimized by a state
possessing ferromagnetic order along the x direction. More-
over, taking into account that the coupling strengths are pro-
portional to the ratio 1/N, we have that the net interactions
converge to finite values in the thermodynamic limit:
jf —=2, jf ——2A. Tt is then rather straightforward to apply
the analytic method to the LMG model and hence prove,
exactly, that the ground state is fully factorized at the factor-
izing field i,= VA, which is, correctly, independent on N. The
form of the fully separable ground state is the tensor product
of local states of the form |¢y)=cos(8/2)|T)+sin(6/2)]] )
with @=arccos(VA) and the energy density reads E/N=—(1
+A)/4. These results are in agreement with those obtained,
using the direct method, by Dusuel and Vidal,?® modulo a
proper normalization factor.

VIII. MODELS WITH SPATIAL ANISOTROPIES

The versatility and generality of the analytic method can
be demonstrated further by considering extensions of the
translationally invariant models discussed in the previous
sections. In fact, till now, we have always considered sys-
tems in which the coupling amplitudes depend only on the
distance between the spins involved. In the present subsec-
tion we shall focus instead on models which contemplate the
possibility of spatial anisotropies, i.e., given the spin §; as-
sociated to site /, the interaction coupling with spin §; asso-
ciated to site j depends not only on the distance r= li ]| but
also on the location of site J relative to site .

To simplify the notations, the physical analysis, and the
number of possible cases that need to be considered, we limit
ourselves to models with short-range interactions, i.e., with
all the couplings vanishing for r=|i—j|=2. We will com-
ment briefly on general models with spatial anisotropies and
interactions of arbitrary range at the end of this section. Let
us assume that for each site i the total number of nearest
neighbors is Z;= Z(1)+Z(2 , where Z(ll) is the number of near-
est neighbors whose coupling strength with S; takes a certain
value f,, and Z<12) is the number of nearest neighbors whose
coupling with §; is given by a different value g,. Obviously,
we could consider situations more complicated at will, with
an arbitrary number of n different types of nearest neighbors.
For the given example, the system Hamiltonian reads

H=123 [(E FSISE+ SIS + fZSZSk,)

i L\

(2 8:SiSE, + 8,515y, + 8558} )] -2hs;, (51)

where the index k; runs over the first Z<11) nearest neighbors,
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FIG. 2. (Color online) Summary of the possible magnetic ar-
rangements along a single direction (x or y) characterizing the
candidate-factorized ground states of models with spatially aniso-
tropic interactions. The case considered corresponds to a ladder of
two coupled one-dimensional spin chains with coordination num-
bers Z(ll)=2 and Z(12)=l. Topmost row: (a) parallel and (b) antipar-
allel ferromagnetic orders. Bottommost row: (c) parallel and (d)
antiparallel antiferromagnetic orders.

and the index k, runs over the remaining Z< ) nearest ne1gh—
bors for each spin §;. According to the d1fferent values of Z1
and Z ) this Ham1lton1an descrlbes various possible models.
For 1nstance if Z{"=2 and Z¥’=1 Eq. (51) describes XYZ
models on ladders constituted by two coupled linear chains;
the case Z (D=4 and Z =1 corresponds to models defined on
two coupled square latt1ces In both cases, every spin in each
chain (plane), besides the usual interactions within a single
chain (plane) involving lel) nearest neighbors, is also
coupled to Z compamon S 1ns located on the second chain
(plane). The 1nstance Z< )—Z =1 corresponds to a XYZ-type
model defined on a llnear cham with nearest-neighbor inter-
actions of alternating strengths. The factorization properties
of this latter model have been studied by Giorgi** in the limit
f.=g.=0 that, belonging to the XY symmetry class, can be
solved exactly.

As we have seen in Sec. 1V, the first step of the method is
to single out the magnetic order that minimizes the energy
associated to the candidate factorized ground state, at fixed
magnetization along the z direction (the direction of the ex-
ternal field). Provided there are no effects of frustration, in
the present case we obtain that every possible hypothetical
factorized ground state can assume one of eight different
magnetic orders. These eight possibilities stem from the four
possible orders of Eq. (13), that the system can support when
the effects of g, can be neglected, duplicated according to
the two possible arrangements, parallel or antiparallel, in-
duced by the interactions associated to g,. The four possible
orderings along a single direction are represented in Fig. 2
for a model of two transversally coupled one-dimensional
spin chains.

By imposing the minimization of the energy per site, Eq.
(10), the kind of order actually present in the ground state
can be determined comparing the antiferromagnetic and fer-
romagnetic net interactions along the x and y axes, defined as

\-7A Z(])f +Zl gm

T =+ 20f, + 2%,

where the * sign discriminates between parallel/antiparallel
ordering with respect to g,. As a function of the net inter-
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actions, the type of magnetic order present in the sys-
tem is determined by the value of the minimum, i.e., of

M:min{Jf,Jf,in\7?_,\7?,‘75_,‘7?:\7?_}. Accordingly,

we have the following correspondences:

jf+:>Parallel ferromagnetic order along x;
jf:_:Antiparallel ferrom. order along x;
jf+:Parallel ferrom. order along y;

< j;r = Antip. ferrom. order along y;
j?+=>PaIallel antiferrom. order along x;
j’;‘_=>Antip. antiferrom. order along x;

j?+:>Parallel antiferrom. order along y;

\j’;_:Antip. antiferrom. order along y.
(52)

Obviously, also in the presence of spatial anisotropies we
may observe that, in terms of the net interactions, the fact
that in the system there is no frustration (and especially no
frustration arisin§ from the spatial anisotropies) implies that
u==ZV|fo|-Z?|g,l, where a=x,y according to which axis
is characterized by the given magnetic order.

Without loss of generality, let us consider the situation in
which the system realizes a parallel antiferromagnetic order
along the x direction, see Fig. 2(c). All other cases can be
treated analogously. Following once again the steps de-
scribed in Sec. IV, and in complete analogy with Eq. (28), it
is possible to derive the set of conditions that the orientation
6 of the E-SQUO must satisfy simultaneously in order for
the system to admit a factorized energy eigenstate

cos® O= Ltte (53)

Jatf:

cos® O= Sng' (54)
8x— gz

For the two conditions to be satisfied simultaneously the two
rhs must coincide and must assume values in the interval
[0,1]. Hence, by equating them it is possible to derive an
equation that plays the same role in Egs. (43)—(46). In the
hypothesis that the model under investigation satisfies both
Eqgs. (53) and (54), what is left to prove is that the associated
factorized state be indeed the ground state. Following the
route illustrated in Sec. IV it is not difficult to verify that the
following inequalities must hold:

(fx+fy)(fx+fz)20; fxz_fz; (55)

(gx+gy)(gx_gz)20; gxggz' (56)

It is straightforward to establish that they are both satisfied,
provided there are no frustration effects. Namely, for spins
interacting via couplings of the first kind f,, (referring to Fig.
2, these are the intrachain interactions), the second of Eq.
(55) yields that the denominator in the rhs of Eq. (53) is
non-negative and, therefore, the corresponding numerator
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must be non-negative and not exceeding the denominator.
Hence, we obtain f, = f,. On the other hand, from the first of
Eq. (55) it follows that f,=~—f, which, in turn, implies f,
= [fy| The latter relation is in agreement with the hypothesis
of absence of frustration. Furthermore, for pairs of neighbor-
ing spins interacting with a coupling of the second kind g,
(referring to Fig. 2, these are the interchain interactions), the
second of Eq. (56) yields that the denominator in the rhs of
Eq. (54) must be nonpositive. Hence, also the corresponding
numerator must be nonpositive and therefore g, = g,. Simul-
taneously, the first of Eq. (56) implies g, =<-g, and therefore
2 =| 8,|, again in complete agreement with the hypothesis of
absence of frustration. Collecting all these results we can
conclude that in the absence of frustration, if a system de-
scribed by the model Hamiltonian (51) satisfies simulta-
neously all conditions in Egs. (53) and (54), there exist a
factorizing field hy at which the ground state is fully factor-
ized and characterized by a parallel antiferromagnetic order
along x. The factorizing field is determined according to the
procedure described in Sec. IV, and it is not difficult to verify
that it reads

n= 3\ - T - I0. (57)

The exact form of the factorized ground state reads

|\I’f>= Q]?'¢/_<>’ (58)

i) = (cos(612)|Tp) + €' sin(6/2)| 1)) © (cos(0/2)|Tf_C>
+ e sin(6/2)| ). (59)

[T3NT3

In Eq. (58), the superscript “u (“I“) denotes the upper
(lower) chain of the ladder model considered in Fig. 2(c). We
observe that ¢,=|k|7 does not depend on the choice of the
chain, implying that the two generic kth spins in both legs of
the ladder are in the same state equipped with an antiferro-
magnetic order with respect to the nearest-neighbor sites
along the corresponding chain. Analogous results hold, with
the appropriate trivial modifications, when considering the
other possible magnetic orders compatible with factorization
[see Eq. (52)].

IX. CONCLUSIONS AND OUTLOOK

The present work has been motivated both by the need for
exact solutions to complex many-body quantum spin models,
in particular, by the question “when is a mean-field solution
exact?,” and by the necessity to acquire improved knowledge
and control on the structure of quantum correlations for po-
tential technological applications of spin systems. We have
presented a simple and rather powerful all-analytic general
method to determine the conditions for the existence and the
properties of fully factorized (fully separable) ground states
in translationally invariant quantum spin models with general
two-body exchange interactions and subject to external
fields.

The theory developed in the present paper builds on and
extends the scheme originally introduced in Ref. 27. It pro-
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vides a readily useful procedure to establish, in terms of the
Hamiltonian parameters, whether the ground state is en-
tangled or completely factorized and, in the latter case, what
is the exact form of the state, the expression of the ground
state energy and of the magnetic observables, and the type of
ordered phase (magnetic order) compatible with factoriza-
tion. The task is achieved by exploiting tools imported from
quantum information theory such as the formalism of single-
qubit unitary operations introduced in Refs. 28 and 29 and
the corresponding entanglement excitation energies, whose
property of vanishing, if and only if a quantum ground state
is totally factorized, plays a central role in the analysis of
ground state separability. Using these tools we have com-
pleted the program initiated in Ref. 27 by determining a gen-
eral set of exact relations and inequalities that, for
frustration-free systems, allow to establish rigorously the oc-
currence of all types of possible factorized ground states.

We have applied the analytic method to spin-1/2 models
with general Heisenberg-type exchange interactions of arbi-
trary range (short, finite, and long), either isotropic or aniso-
tropic, defined on regular lattices of arbitrary dimensions.
The method is insensitive to the size of the system and ap-
plies rigorously in the thermodynamic limit as well as for
finite lattices. The method allows to establish exact, fully
factorized ground state solutions of generally nonexactly
solvable models, corresponding to nontrivial sets of values of
the Hamiltonian parameters. Key results include, for in-
stance, the rather straightforward determination of the exis-
tence and form of factorized ground states in XYZ-type mod-
els with different types of short-range and long-range
interactions on cubic lattices, a task that would be of formi-
dable complexity if tackled with numerical techniques or re-
sorting to the simple-minded direct method based on the
product ansatz.

The complete factorization diagram for nearest-neighbor
Heisenberg-type anisotropic models might be particularly
useful for those technological implementations which em-
ploy spin systems as information processors exploiting their
ground state entanglement.'* We have provided in Fig. 1(a)
“minefield” map of the unentangled working points that need
to be avoided, when engineering the couplings and tuning
the external fields, in order to achieve satisfactory quantum
transmission performances. On the other hand, there are also
alternative tasks in quantum information which instead re-
quire as initial working points factorized states, e.g., for en-
gineering, via suitable dynamics, specific classes of long-
distance entangled states useful for quantum state transfer
and quantum teleportation*! or the instantaneous creation of
strongly entangled graphs or cluster states involving a meso-
scopic or macroscopic number of spins for one-way quantum
computation:*? in these instances the minefield may turn into
a treasure map. The analysis of ground state factorization
would be particularly useful in the study of quantum spin
models on open-end lattices. Such systems are not transla-
tionally invariant, and therefore the analytic method requires
to be suitably extended to this type of instances. This gener-
alization is under way and should be in reach in the near
future.

Notably, according to a general theorem by Kurmann et
al.?® on factorization, given any Hamiltonian of the form Eq.
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(6) involving higher spins $>1/2, the ground state of that
spin-S system is fully factorized at the same value of the
external field h=h, Eq. (30), at which factorization occurs in
the corresponding spin-1/2 model. Therefore, the method and
the results derived in the present paper have a much wider
scope of application and can be straightforwardly general-
ized to interacting systems with arbitrarily high values of the
spin, provided they are of the same Hamiltonian structure as
in the spin-1/2 case.

Absence of frustration effects, either of geometric or dy-
namical nature, has been essential to the theoretical scheme
derived in the present work. For instance, we have deter-
mined the factorization diagram for specific examples of
frustration-free systems endowed with isotropic interaction
terms of different spatial ranges, and for systems with
nearest-neighbor anisotropic interactions. However, it is
clear that there are many extremely interesting instances of
more complex systems that would in general be subject to
frustration effects. Continuing a step-by-step strategy of ap-
plying the general method to models of increasing complex-
ity, natural further stages of investigation would include
models subject to frustration, e.g., models on linear chains
with competing isotropic interactions of different range such
as a 1D XYZ-type model with nearest-neighbor ferromag-
netic interactions and next-to-nearest-neighbor antiferromag-
netic interactions. Increasing further the degree of complex-
ity, one could then consider models with competing
anisotropic interactions of different ranges, that according to
the type of anisotropy could be subject to both geometrically
and dynamically induced frustrations.

When considering frustrated models, except for very spe-
cial cases, even when the considered system admits a fully
factorized state as an energy eigenstate, the set of conditions
derived in the present work are not sufficient to establish that
such an eigenstate is indeed the ground state of the system.
In fact, a competition arises between factorization, which
requires a magnetic ordering, and frustration, which tends to
destroy magnetic orders, ultimately leading to a chaotic cor-
relating behavior. The latter unavoidably tends to enhance
ground state entanglement, thus suppressing the occurrence
of situations where the most favorable state, in terms of en-
ergy content, is completely uncorrelated. In such cases, a
naive application of the direct method based on the factor-
ized ansatz, for instance, to models including anisotropic in-
teraction terms of different magnetic types on many different
spatial scales (or even on all scales), leads unavoidably to
overestimate the factorizing effect of the balancing between
interactions and external fields and thus to badly incorrect
predictions on the occurrence of fully factorized ground
states in these classes of models, as done, unfortunately, in
the second part of Ref. 34. In a forthcoming work3® we will
present a systematic and thorough study of some important
classes of frustrated quantum spin models in order to estab-
lish the conditions for the occurrence of true ground state
factorization and to characterize it in terms of compatibility
thresholds with frustration.

An intriguing issue that arises in connection with frustra-
tion is the relationship between factorization and the exis-
tence of ordered phases. For frustration-free Hamiltonian
systems that conserve the even-odd parity, spontaneous sym-
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metry breaking, and the existence of an ordered phase are
necessary conditions for ground state factorization, because
factorized states have no definite parity. However, in the
presence of frustration there may exist factorized energy
eigenstates without ground state factorization. It would then
be very interesting to understand whether in these situations
there is still a causal relation between factorization and the
existence of phase transitions in the system. Factorization
might then be used as an heuristic tool to gain insight in the
phase diagram of frustrated quantum systems.

It would also be important to understand whether chiral
interactions can enhance factorization beyond the limits im-
posed by the presence of frustration effects. In fact, since
factorization can be seen as “mean field becoming exact,” it
seems to require quite naturally a balancing between interac-
tions and external fields as the only possibility for its occur-
rence. However, one cannot exclude, in principle, that other
mechanisms might lead to the same effect without requiring
the presence of external driving fields.

Future investigations will be concerned with the applica-
tion of the analytic method to the determination of the spec-
trum of factorization, that is the study of the occurrence of
factorized excited states in different classes of quantum spin
Hamiltonians, and the implications of factorization diagrams
on the structural and informational properties of quantum
spin models for potential applications in quantum technol-

ogy.
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APPENDIX: DETERMINATION OF THE MAGNETIC
ORDERINGS COMPATIBLE WITH GROUND
STATE FACTORIZATION

In Sec. IV we have determined the general conditions for
ground state factorization by selecting as candidate factor-
ized ground states only those characterized by a ferromag-
netic or antiferromagnetic order along the x or y direction
depending on the value of the minimum value u in the set of
the net interactions [see Eq. (13)], and neglecting all other
possible magnetic arrangements. In the following, we will
prove that indeed, given any spin Hamiltonian of the type
Eq. (6), if a factorized ground state exists, then it is charac-
terized by one of the four above-mentioned magnetic orders.

Let us consider the most general factorized state compat-
ible with the constraint of a site-independent magnetization
M,

W)= ‘% l). |y =cos(012)[1,) + % sin(6/2)| ).
where the local spin state |1/1,_<) is eigenstate of
(A1)

51_c = cos 6S; +cos ¢ sin 6S; +sin ¢ sin 6S;,

with eigenvalue equal to 1/2. Let us suppose that there exists
a Hamiltonian of the type Eq. (6) that admits, for some par-

PHYSICAL REVIEW B 79, 224434 (2009)

ticular value of the external field 2=h,, the state in Eq. (A1)
as an eigenstate. Under these hypotheses we must have that
the projection of the factorized eigenstate onto the four-
dimensional Hilbert space of a pair of spins in the lattice
must be an eigenstate of the pair-Hamiltonian term H,; de-
fined as in Eq. (23). i
Following the same strategy as in Sec. IV let us introduce
for each site i a set of three auxiliary mutually orthogonal
spin operators among which one, that we name A?, coincides

A =cos 0 cos @S] +cos 6sin ¢S] —sin 6S};

, . x .
A} =—sin @S] +cos ¢;5};

A =sin 6 cos ¢;S; +sin 0 sin ¢;S} +cos 6S;.  (A2)

By inverting Egs. (A2), we can conveniently re-express the
conventional single-spin operators as functions of the new

set of operators {A;}
S} =Aj cos 6 cos ¢;— A} sin ¢;+A; sin 6 cos ¢;;
S§Y=Aj cos @sin @; + A cos @;+Aj sin 0sin ¢;;
S;=—Aj sin 0+ A; cos 6.

L

(A3)

Substituting Eq. (A3) into the pair Hamiltonian we obtain the
expression for H; ; at factorization as a function of the sets of

operators {A;"} and {Af}, which reads

H;; :AfA;’»[cos2 0J. + sin” 6(J” cos ®; COS @

+J} sin @; sin ¢;)] - 2h; sin H[AE‘(Aj - %)
1
+ (Af - E>A;‘} +AfA;_?(J£ —2h cos 0)
+AfAf(J; sin ¢; sin ®; +J} cos ¢; cos (pl)
— Iy cos (A7 + A7) + (AjA] cos 6+ AjA} sin 6)
X (=J} cos ¢; sin ¢Z+J; sin ¢; cos ‘PZ) + (A{AE cos 0
+AJAj sin 0)(=J} sin @; cos @; +J;, cos ¢; sin ¢;),
(A4)

where, as usual, r is the distance between sites i and j, J/, are
the spin-spin couplings at distance r and along direction a,
and

h;- obeys to the following relation

2h=cos O(J, - cos ¢; cos @;J; = sin ; sin @;J)).
(A5)
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From Eq. (A4), one has that to ensure that the projection
of the factorized state onto the four-dimensional Hilbert
space of spins §; and §; is an eigenstate of the pair Hamil-

tonian, it is necessary to require that the terms associated to

the operators AZ‘A}‘?, A{Af, AZ?A}’, and AJYAL? vanish. This condi-

tion yields that

J} cos @; sin @;=J} sin @; cos ¢;, (A6)
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J; sin ¢; cos @;=J), cos ¢; sin ;. (A7)

Solving Eqs. (A6) and (A7) we obtain that if |J| #|J]|, then
the phases ¢ obey to the following relations: )

¢;=0,m2 ¢;=¢+nm, (A8)

with n integer. It is immediate to verify that these relations
are consistent only with a ferromagnetic or with an antifer-
romagnetic order along the x or y direction. This concludes
the proof.
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